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Endogenous Fatty Acid Ethanolamides Suppress Nicotine-
Induced Activation of Mesolimbic Dopamine Neurons
through Nuclear Receptors
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Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of
tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms under-
lying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the
endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We
discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides,
among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells.
Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanol-
amide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling
molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation
of the peroxisome proliferator-activated receptor-a (PPAR-«), a nuclear receptor transcription factor involved in several aspects of lipid
metabolism and energy balance. Activation of PPAR-« triggered a nongenomic stimulation of tyrosine kinases, which might lead to
phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the
anorexiclipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-« in the brain and provide a potential
new target for the treatment of nicotine addiction.
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Introduction

Nicotine is the main active component in tobacco smoke, which
initiates and sustains tobacco addiction. Hence, nicotine induces
drug-seeking behavior in animals and many additional effects
commonly seen with addictive drugs (Stolerman and Shoaib,
1991). Among these effects, stimulation of mesolimbic dopamine
(DA) transmission is considered to be one of the hallmarks to
define the addicting potential of nicotine, being one of the com-
mon features of all abused drugs (Di Chiara and Imperato, 1988;
Wise, 2004). By acting at neuronal nicotinic acetylcholine recep-
tors (nAChRs), nicotine activates ventral tegmental area (VTA)
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DA neurons (Mereu et al., 1987; Pidoplichko et al., 1997) and
induces DA release in the nucleus accumbens (Di Chiara and
Imperato, 1988).

Among medications aimed at achieving smoking cessation,
antagonists at the cannabinoid type-1 (CB,) receptors show
promise, based on preclinical data indicating that these com-
pounds, such as rimonabant (SR141716A) or AM251, reduce
nicotine self-administration or conditioned place preference
(CPP) (Cohen et al., 2002; Le Foll and Goldberg, 2004; Forget et
al., 2005; Shoaib, 2008), nicotine-induced DA release in the nu-
cleusaccumbens (Cohen et al., 2002; Cheer et al., 2007), or smok-
ing cessation in humans (Cahill and Ussher, 2007). These data
strongly point to a facilitatory effect of the endocannabinoid sys-
tem in the motivational and DA-releasing properties of nicotine.
Indeed, endogenous cannabinoids, such as arachidonoylethano-
lamide (anandamide, AEA) and 2-arachidonoylglycerol, and CB,
receptors are involved in the neuronal mechanisms underlying
the rewarding effects of most drugs of abuse, including nicotine
(Castané et al., 2005; Le Foll and Goldberg, 2005; Le Foll et al.,
2008; Solinas et al., 2008).
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The present study was designed to investigate modulation of
nicotine effects by the endocannabinoid system, and to clarify the
role of DA neurons in the mediation of the antiaddicting prop-
erties of CB, antagonists. To this aim, the electrophysiological
responses of DA neurons to nicotine administration were studied
following either blockade of CB, receptors or, conversely, en-
hancement of brain endocannabinoid levels by inhibiting fatty
acid amide hydrolase (FAAH) (Kathuria et al., 2003; Fegley et al.,
2005), the major hydrolyzing enzyme for AEA and other endog-
enous fatty acid ethanolamides (FAEs), such as the N-acylamines
oleoylethanolamide (OEA) and palmitoylethanolamide (PEA).
Unlike AEA, both OEA and PEA have no affinity for cannabinoid
receptors, but bind to the peroxisome proliferator-activated re-
ceptor (PPAR), a family of nuclear receptor transcription factors
(Fuetal., 2003; Lo Verme et al., 2005). Three subtypes of PPARs
(a, B/8 and vy) play important roles in lipid metabolism, insulin
sensitivity, glucose homeostasis and inflammation (Berger and
Moller, 2002). Through PPAR-«, OEA and PEA are peripherally
acting satiety signals that modulate feeding, body weight and
lipid metabolism (Rodriguez de Fonseca et al., 2001; Fu et al.,
2003) and have antinociceptive effects in visceral and inflamma-
tory pain models (Lo Verme et al., 2005; D’Agostino et al., 2007;
Suardiaz et al., 2007).

We discovered that, contrary to our expectations, enhance-
ment of brain FAE levels, rather than blockade of CB, receptors,
inhibited the responses of DA neurons to nicotine. More impor-
tantly, the noncannabinoid FAEs OEA and PEA play a novel and
unsuspected role, as PPAR-« agonists, in the negative regulation
of neuronal responses to nicotine.

Materials and Methods

Electrophysiology: single unit recordings. We performed the experiments
in strict accordance with the Guidelines for the Care and Use of Mam-
mals in Neuroscience and Behavioral Research (National Research
Council 2004) and EEC Council Directive of 24 November 1986 (86/
609). We made all efforts to minimize pain and suffering and to reduce
the number of animals used.

Male Sprague Dawley rats (250-350 g) (Harlan) were housed in
groups of three to six in standard conditions of temperature and humid-
ity under a 12 h light/dark cycle (with lights on at 7:00 A.M.) with food
and water available ad libitum.

Animals were anesthetized with urethane (1300 mg/kg, i.p.), their
femoral vein was cannulated for intravenous administration of pharma-
cological agents, and they were placed in the stereotaxic apparatus (Kopf)
with their body temperature maintained at 37 = 1°C by a heating pad.
Thereafter, the scalp was retracted and one burr hole was drilled above
the VTA (—6.0 mm anteroposterior from bregma, 0.3-0.6 mm lateral
from midline) for the placement of a recording electrode. For intracere-
broventricular drug administration, a guide cannula (23 gauge stainless
steel) was placed into the ventricle ipsilateral to the recording side (1.0
mm posterior, 1.4 mm lateral to bregma and 4.0 mm ventral to the
cortical surface). Structures were localized according to the stereotaxic
atlas of Paxinos and Watson (1997). Intracerebroventricular injections
were made through a prefilled inner cannula (30 gauge stainless steel
tubing) connected to a 50 wl Hamilton microsyringe and extending 1.0
mm below the tip of the guide into the ventricle. Infusion rate was set at
2.5 wl/min by an electrically driven mini-pump.

Single unit activity of neurons located in the VTA (V 7.0-8.0 mm
from the cortical surface) was recorded extracellularly with glass mi-
cropipettes filled with 2% pontamine sky blue dissolved in 0.5 M sodium
acetate (impedance 2-5 M()). Single unit activity was filtered (bandpass
500-5000 Hz) and individual spikes were isolated by means of a window
discriminator (Digitimer), displayed on a digital storage oscilloscope
(TDS 3012, Tektronics) and digitally recorded. Experiments were sam-
pled on line and off line with Spike2 software (Cambridge Electronic
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Design) by a computer connected to CED 1401 interface (Cambridge
Electronic Design).

Single units were isolated and identified according to already pub-
lished criteria (Grace and Bunney, 1983, 1984; Ungless et al., 2004). Since
only one cell was recorded per rat, VTA DA neurons were selected when
all criteria for identification were fulfilled: firing rate <10 Hz, duration of
action potential >2.5 ms, inhibitory responses to hindpaw pinching.
Bursts were defined as the occurrence of two spikes at an interspike
interval <80 ms, and terminated when the interspike interval exceeded
160 ms (Grace and Bunney, 1983).

At the end of each recording section, direct current (10 wA for 15 min)
was passed through the recording electrode to eject Pontamine sky blue,
which allowed the identification of the recorded cells. Brains were re-
moved and fixed in 8% formalin solution. The position of the electrodes
was microscopically identified on serial sections (60 wm) stained with
cresyl violet.

Electrophysiology: patch-clamp recordings. The preparation of VTA
slices was as described previously (Johnson and North, 1992). Briefly,
male Sprague Dawley rats (10—28 d) were anesthetized with halothane in
avapor chamber and killed by decapitation. A block of tissue containing
the midbrain was rapidly dissected and sliced in the horizontal plane (300
wm) with a vibratome (Leica VT10008) in ice-cold low-Ca** solution
containing (in mm): 126 NaCl, 1.6 KCl, 1.2 NaH,PO,, 1.2 MgCl,, 0.625
CaCl,, 18 NaHCO,, and 11 glucose. Slices were transferred to a holding
chamber with artificial CSF (ACSF, 37°C) saturated with 95% O, and 5%
CO, containing (in mm): 126 NaCl, 1.6 KCl, 1.2 NaH,PO,, 1.2 MgCl,,
2.4 CaCl,, 18 NaHCOj3, and 11 glucose. Slices were allowed to recover for
at least 1 h before being placed in the recording chamber and superfused
with the ACSF (37°C) saturated with 95% O, and 5% CO,. Cells were
visualized with an upright microscope with infrared illumination (Ax-
ioskop FS 2 plus, Zeiss), and whole-cell patch-clamp recordings were
made by using an Axopatch 200B amplifier (Axon Instruments). Both
voltage- and current-clamp experiments were made with electrodes filled
with a solution containing the following (in mm): 117 KCI 144, 10
HEPES, BAPTA 3.45, CaCl 1, 2.5 Mg,ATP, and 0.25 Mg,GTP (pH 7.2—
7.4, 275-285 mOsm). Experiments were begun only after series resis-
tance had stabilized (typically 15-40 M(}). Series and input resistance
were monitored continuously on-line with a 5 mV depolarizing step (25
ms). Data were filtered at 2 kHz, digitized at 10 kHz, and collected on-line
with acquisition software (pClamp 8.2, Axon Instruments). DA neurons
from the posterior VTA were identified by the presence of a large I,
current (Johnson and North, 1992) that was assayed immediately after
break-in, using a series of incremental 10 mV hyperpolarizing steps from
a holding potential of —70 mV. Each slice received only a single drug
exposure.

Drugs. Nicotine ((—)-nicotine hydrogen tartrate) was purchased from
Sigma. OEA, PEA, methanandamide (mAEA), AM281, AM251, capsaz-
epine, WY14643, MK886, genistein, PP2 were purchased from Tocris.
Rimonabant (SR141716A) was a generous gift of Sanofi-Aventis Recher-
che (Montpellier). Nicotine was diluted in saline (pH = 7). For i.c.v.
administration, OEA or mAEA were dissolved in 40% w/v
2-hydroxypropyl-B-cyclodextrin. mAEA for i.v. injections was dissolved
in 2% Tween 80 and 2% ethanol and then diluted in saline. Rimonabant
was emulsified in 1% Tween 80, then diluted in saline solution and
sonicated. URB597 and MK886 were dissolved in DMSO (100 ug/ul)
and diluted to the final concentration in saline. All drugs for patch-clamp
experiments were dissolved in DMSO as stock solutions and then dilute
to the final volume in ACSF (final concentration <0.01%).

Statistical analysis. Drug-induced changes in firing rate and pattern
were calculated by averaging the effects after drug administration (2 min
or 30 s bins for in vivo and in vitro electrophysiology, respectively) and
normalizing to the predrug baseline. All the numerical data are given as
mean = SEM. Data were compared and analyzed by using two-way
ANOVA for repeated measures (treatment X time), or one-way ANOVA
or Student’s ¢ test for repeated measures, when appropriate. Post hoc
multiple comparisons were made using the Dunnett’s test. Statistical
analysis was performed by means of the NCSS program. The signifi-
cance level was established at p < 0.05.
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ANOVA for repeated measure) (Fig. 1B—

D). As previously reported, nicotine-

* induced excitation was short lasting, being
significant 2 and 4 min following adminis-
tration (Dunnett’s post hoc). Injections of
all the different vehicles (either intraperi-
toneal, intravenous, or intracerebroven-
tricular) that were used in all subsequent
experiments neither significantly changed
the discharge activity of DA neurons nor
modulated the effect of the subsequent
nicotine administration. Therefore, all con-
trol experiments with nicotine were pooled.
We first studied the effect of CB, recep-
tor blockade on nicotine-induced excita-
tion of DA neurons. Rimonabant
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6 10 14 nicotine) did not modify the excitatory re-
sponse of DA neurons to nicotine com-
pared with vehicle (F, ;93 = 1.10,n = 11,
* % p = 0.3, two-way ANOVA for repeated
measures) (Fig. 1B-D). Next, we investi-

gated the effect of enhancement of endog-
enous endocannabinoid tone. Rats were
pretreated between 60 and 120 min (aver-
age 72.4 min) before electrophysiological
recordings with URB597 (0.1 mg/kg, i.v.),
an irreversible FAAH inhibitor. The inter-
val between URB597 administration and
recordings varied among experiments,
nevertheless, this dose of URB597 is within
the range of doses shown to enhance per-
sistently (>6 h) brain AEA levels (Kathu-
ria et al., 2003; Fegley et al., 2005), with
maximal effects 1-2 h following adminis-
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Figure 1.

Results

Effects of rimonabant and URB597 on activation of VTA
dopamine neurons by nicotine in vivo

We recorded the activity of VTA DA neurons in urethane anes-
thetized rats. Cells were recorded only when they fulfilled all
established criteria for VTA DA neuron identification (see Mate-
rials and Methods). A typical DA neuron broad waveform is
shown in Figure 1A. Consistent with previous in vivo studies
(Mereu etal., 1987; Erhardt et al., 2002), nicotine (0.2 mg/kg, i.v.)
enhanced firing rate of VTA DA neurons to 144.2 = 24.2% of
baseline and burst firing to + 10.6 + 3.8% (F(5 ;,, = 4.06, n = 23,
P <0.05; F5 7,y = 2.89, n = 23, p < 0.05, respectively, one-way

Effects of rimonabant and URB597 on activation of VTA dopamine neurons by nicotine. 4, Average trace, acquired
from a digital storage oscilloscope, showing the typical, broad, notched waveform of a VTA dopamine neuron recorded from an
anesthetized rat. B, Representative firing rate histograms showing effects of intravenous nicotine (NIC, injected at arrowheads) on
discharge activity of individual VTA dopamine neurons recorded from anesthetized rats. The top panel shows the typical response
t0 0.2 mg/kg nicotine in control conditions following intravenous injection of vehicle (VEH). The middle panel shows the lack of
effect of rimonabant (SR, 0.5 mg/kg, i.v.) on spontaneous firing rate of dopamine neurons and on the subsequent effects of
nicotine. The bottom panel shows the effect of nicotine in a URB597 pretreated animal, where nicotine induced a transient
inhibition of firing activity. €, D, Graphs illustrating the time course of nicotine’s effects on firing rate and burst firing of VTA
dopamine neurons. Pretreatment with URB597 (0.1 mg/kg, i.v.), but not rimonabant (0.5 mg/kg, i.v.), prevented the nicotine-
induced increases in firing rate (€) and burst firing (D) of VTA dopamine neurons. Results are means, with vertical bars represent-
ing the SEM of firing rates and burst firing, expressed as a percentage of or difference from baseline (BAS) values. Arrows represent
time of nicotine injection. *p << 0.05 versus baseline (one-way ANOVA for repeated measures and Dunnett’s test).

6 10 14 tration (Fegley et al., 2005). URB597 did
not change spontaneous baseline firing
rate (3.7 = 0.26 Hz, n = 48, in control
animals; 3.9 £ 0.14, n = 14, in URB-
pretreated animals, p = 0.36, Student’s ¢
test) or burst firing (22.6 = 3.64% of
spikes in bursts, n = 48, in control ani-
mals; 23.0 = 5.15%, n = 14; in URB-
pretreated animals, p = 0.96, Student’s ¢
test) of VTA DA neurons assessed before
nicotine administration, but, unexpect-
edly, it completely prevented nicotine’s ef-
fects on DA neuronal activity (74.1 =
6.2% and —16.8 = 4.1% of baseline, for
firing rate and burst firing, respectively)
(Fig. 1B,C,D). Two-way ANOVA showed
a highly significant effect of URB597 treatment on the effects of
nicotine on firing rate (F(, o5y = 4.95, n = 6, p < 0.01) and burst
firing (F(; 157y = 7.98, n = 6, p < 0.01). Hence, following URB597
pretreatment, nicotine transiently inhibited, rather than excited, fir-
ing rate and burst firing of DA neurons (F 5,3, = 3.73, p < 0.001,
n = 6; F; 3y = 9.44, p < 0.01, one-way ANOVA for repeated mea-
sures) (Fig. 1 B,C,D).

Contribution of CB, receptors and PPAR-a to URB597
antagonism of nicotine effects in vivo

URB597 has been shown to increase not only AEA, but also OEA
and PEA levels (Kathuria et al., 2003). We first investigated
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Figure 2.  Contribution of (B, receptors and PPAR-cx to URB597's reversal of nicotine’s ef-
fectsinvivo.A, The (B, receptor antagonists rimonabant (SR, 0.5 mg/kg, i.v.) or AM251 (AM, 1.0
mg/kg, i.v.) reversed URB597's blockade of nicotine-induced increases in firing rate of VTA
dopaminergic neurons produced by nicotine (NIC, 0.2 mg/kg), whereas the PPAR-« antagonist
MK886 (MK, 3 mg/kg, i.p.) was ineffective. B, In contrast, MK886 administration reversed
URB597’s blockade of nicotine-induced increase in bursting activity of VTA dopamine neurons,
whereas rimonabant and AM251 were ineffective. Results are means, with vertical bars repre-
senting the SEM of firing rates and burst firing, expressed as a percentage of or difference from
baseline (BAS) values. Arrows represent time of nicotine injection. *p << 0.05 versus baseline
(one-way ANOVA for repeated measures and Dunnett's test).

whether AEA mediates URB597’s antagonism of nicotine effects
by acting at CB, receptors. For this purpose, we administered the
CB, antagonist rimonabant together with URB597. Rimonabant
(0.5 mg/kg, i.v. 1 min before URB597) significantly reduced the
ability of URB597 to block nicotine-induced stimulation of DA
neuron discharge rate (123.7 = 11.5% of baseline), but not of
burst firing (—18.4 * 8.0% of baseline) (F(, 53, = 11.04, n =9,
p < 0.01; Fy 53 = 2.30, n = 9, p = 0.2, respectively, two-way
ANOVA for repeated measures) (Fig. 2A, B). The CB, receptor
antagonist AM251 (1.0 mg/kg, i.v. 1 min before URB597, n = 5)
fully replicated the effects of rimonabant (Fig. 2 A, B) (firing rate:
F 61y = 10.96, n = 6, p < 0.01; burst firing: F, 5, = 0.00, n = 6,
p = 0.9, two-way ANOVA for repeated measures). This dissoci-
ation between URB597 effects on nicotine-induced increases in
firing rate and burst firing was further analyzed by assessing the
contribution of the noncannabinoid FAEs (OEA and PEA),
which are ligands at PPAR-« (Fu et al., 2003). We asked whether
the effect of URB597 could be antagonized by the synthetic selec-
tive PPAR-« antagonist MK886 (3 mg/kg, i.p.). MK886 signifi-
cantly prevented URB597 from altering nicotine-induced stimu-
lation of bursting (+10.5 & 3.5% of baseline) (F, ,,, = 4.90, n =
13, p < 0.05, two-way ANOVA for repeated measures) (Fig. 2 B),
but not firing rate (F(, ;5y = 0.0, n = 13, p = 0.95, two-way
ANOVA for repeated measures) (Fig. 2A). These results suggest
that diverse FAEs may modulate nicotine effects on DA neurons
through different mechanisms.

Oleoylethanolamide blocks nicotine effects in vivo

via PPAR-«

To determine the precise contribution of either CB; or PPAR-«
receptors in the observed effects, we assessed whether mAEA, the
metabolically stable analog of AEA, and OEA modulated the re-
sponse to nicotine of VTA DA neurons. mAEA was administered
intravenously at doses of 1 and 5 mg/kg (n = 6 each group) (Fig.
3A,B), or i.c.v. at a dose of 5 ug/5 ul (n = 6) (Fig. 3B) 4 min
before nicotine administration. These doses, which exert CB,
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receptor-mediated behavioral effects in vivo (Solinas et al., 2006,
2007), did not affect either baseline firing rate or burst firing of
DA neurons or modulate the excitatory response to nicotine ad-
ministration, compared with vehicle (F; 55,y = 0.68,n = 6,p =
0.57, two-way ANOVA for repeated measures). Due to the poor
metabolic stability of OEA, we chose to administer it (20 ug/5
ul), or a corresponding volume of vehicle (40% w/v
2-hydroxypropyl-B-cyclodextrin), into the lateral ventricle 4 min
before nicotine. In contrast to mAEA, OEA completely prevented
the activation of DA neurons induced by nicotine (92.7 = 13.5%
of baseline at 2 min postnicotine) (Fig. 3C,D), whereas vehicle
injection was inactive (n = 6, data not shown). Two-way ANOVA
showed a significant effect of OEA treatment on nicotine-
induced stimulation of firing rate and burst firing (F(, 49, = 5.61,
n=6,p <0.05 Fg 97 = 428, n =6, p < 0.05, respectively,
two-way ANOVA for repeated measures). Neither OEA nor ve-
hicle produced significant changes in the spontaneous firing rate
or burst firing of DA neurons (Fig. 3C,D). Next, MK886 pretreat-
ment (3 mg/kg, i.p., 30 min before recordings) prevented the
blockade by OEA of nicotine’s excitatory effects (122.8 = 7.2% of
baseline at 4 min postnicotine), when compared with OEA alone
(F(1 55y = 6.06, n = 8, p < 0.05, two-way ANOVA for repeated
measures) (Fig. 3C,D), thus highlighting the role of PPAR-« in
the effects of OEA.

Blockade of nicotine-induced excitation of dopamine neurons
in vitro by noncannabinoid fatty acid ethanolamides

We next asked whether modulation of nicotine effects by
PPAR-a could be studied in brain slices containing the mesen-
cephalon by using whole-cell patch-clamp recordings. The effect
of nicotine was studied on posterior VTA DA neurons. Figure 4 A
(top) shows a typical action potential of a representative DA neu-
ron, when recorded in the current-clamp mode, with its typical
low threshold, broad action potential, and prominent afterhyper-
polarization. The second derivative of this action potential orig-
inates the waveform (Fig. 4 A, bottom) that has been used for cell
identification of DA neurons in many in vivo extracellular studies
(Grace and Bunney, 1983, 1984; Ungless et al., 2004), and quali-
tatively corresponds to the typical action potential recorded in
vivo and shown in Figure 1A. DA neurons recorded under
current-clamp mode displayed an average frequency of 1.8 * 0.1
Hz (n = 102) and fired spontaneously in a clock-like, single-spike
mode. Consistent with the literature (Pidoplichko et al., 1997),
DA neurons responded to bath-applied nicotine (1 um, 2 min)
with a transient excitation of discharge rate (~40%) (Fig. 4 B-D).
This excitation peaked (137 = 12.8% of baseline, n = 6), and was
statistically significant (F,;, = 8.03, p < 0.0001, one-way
ANOVA), during the first minute of application. Under voltage-
clamp mode (Vj,j4ing= —70 mV), nicotine caused a transient
inward current of 40.3 £ 5.6 pA (n = 6) (Fig. 4F), due to rapid
activation and desensitization of nAChRs (Pidoplichko et al.,
1997). We next examined the effects of the three different FAEs
(i.e., mAEA, OEA and PEA) on nicotine induced excitation of
VTA DA neurons. These drugs were applied for 5 min to assess
whether they per se modulated spontaneous firing of DA neu-
rons, and then coapplied with nicotine (1 uM). mAEA was tested
at two different concentrations, 30 nm and 1 uM. The lower con-
centration of mAEA did not significantly affect spontaneous dis-
charge rate of DA neurons or modulate nicotine-evoked excita-
tion (the peak of nicotine with mAEA was 147.7 = 13.7% of
baseline firing rate, p = 0.58, t test, vs nicotine alone) (Fig. 4 E, G).
Since this concentration of mAEA might have been too low, we
next tested a concentration of 1 uM, which itself significantly
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Figure 3.

and Dunnett’s test).

enhanced firing rate of DA neurons to 370.6 = 110% of baseline
level (Fs 1,5y = 21.74, n = 6, p = 0.0001, one-way ANOVA for
repeated measures; data not shown). We asked whether mAEA-
induced stimulation was due to activation of CB, and/or TRPV1
receptors. The CB, receptor antagonist AM281, at a concentra-
tion (500 nm) that fully reverses activation of CB, receptors by
maximal concentrations of agonists (Melis et al., 2004), had no
effect on mAEA-induced stimulation of DA neuron firing rate
(F1.72) = 0.67, n = 5, p = 0.4365, two-way ANOVA; data not
shown). However, this stimulation was completely blocked by
the TRPV1 receptor antagonist capsazepine (10 um, F, ;) =
8.13, n = 5-6, p = 0.019, two-way ANOVA; data not shown).
This observation is consistent with other studies showing that
TRPV1 agonists stimulate DA neuron activity by enhancing glu-

OEA, but not mAEA, prevented increases in firing rate of VTA dopaminergic neurons produced by nicotine. 4,
Representative firing rate histograms showing the effects of nicotine (NIC, 0.2 mg/kgi.v., injected at arrowheads) on the discharge
activity of individual VTA dopamine neurons recorded following injection of mAEA (1 mg/kg, i.v.). B, Graph showing that nicotine-
induced excitation of VTA dopamine neurons was not changed following the administration of mAEA, either intravenously (1and
5mg/kg) orintracerebroventricularly (5 g/5 wul). C, Representative firing rate histograms showing the effects of NIC (0.2 mg/kg
i.v., injected at arrowheads) on the discharge activity of individual VTA dopamine neurons recorded following injection of OEA (20
wg/5 wl, i.c.v.; top). MK886 (MK, 3 mg/kg, i.p.) reversed the OEA-induced blockade of nicotine’s effects (bottom). Neither OEA nor
vehicle (40% w/v 2-hydroxypropyl-3-cyclodextrin) produced significant changes in spontaneous firing rate or burst firing. D,
Graph showing that nicotine-induced excitation of VTA dopamine neurons was abolished by OEA. MK886 (MK, 3 mg/kg, i.p.)
reversed the OEA-induced blockade of nicotine’s effects. Results are means, with vertical bars representing SEM of firing rates,
expressed as a percentage of baseline (BAS) values. Arrows represent the time of intravenous injections. The horizontal bar
represents the time of intracerebroventricular administration. *p << 0.05 versus baseline (one-way ANOVA for repeated measures

t = 7.13, p = 0.0004, paired ¢ test) (Fig.
4F), or PEA (10 uM, 5 min preapplication:
0.6 = 7.5 pA, N = 5, = 4.442, p =
0.001, paired ¢ test) (Fig. 4 F). During pre-
application, OEA and PEA did not induce
inward or outward currents onto DA neu-
rons (data not shown).

Based on these results, we expected that
the PPAR-a antagonist MK886 would
block the actions of OEA and PEA on
nicotine-induced excitation. As predicted,
when OEA or PEA were coapplied with
MKS886 (300 nMm), nicotine’s effects on fir-
ing rate of DA neurons were restored
(155.8 = 16.6% and 163.8 = 11.3% of baseline in the presence of
OEA and PEA, respectively; OEA+MK886 vs OEA alone: F(, 3,3,
=7.59,n =28, p = 0.004, two-way ANOVA; PEA+MKS886 versus
PEA alone: F(; 554 = 4.84, n = 8, p = 0.04, two-way ANOVA)
(Fig. 5A,B,C). MK886 when perfused either alone or in combi-
nation with OEA/PEA did not alter spontaneous firing rate of
VTA DA neurons (Fig. 5C). However, MK886 significantly en-
hanced nicotine-induced activation of DA neurons (207 * 27%
of baseline, MK886+nicotine vs nicotine: t = 2.167,n = 7, p <
0.05, ¢ test) (Fig. 5B).

Next, we determined whether the synthetic PPAR-« agonist
WY14643 would alter the effects of nicotine on DA cells.
WY14643 (300 nm) was per se ineffective on DA neuronal firing
rate, but fully prevented nicotine-induced excitation (83.7 =*
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30nM 1uM

Activation of dopamine neurons by nicotine is prevented by OEA and PEA in vitro. A, Typical action potential waveform of a dopamine neuron recorded under current-clamp mode (top)

and its second derivative (bottom). B, Representative traces of a dopamine neuron spontaneous activity during baseline level (top), nicotine application (nic, T um for 2 min; middle), and wash out
(bottom). €, Rate histogram depicting an example of the effect of nicotine on dopamine neuron firing rate. The horizontal bar represents the time of nicotine application. D, Time course of the
excitatory effect of nicotine on dopamine neuron discharge rate (30 s bins). £, OEA (3 wum) and PEA (10 wm), but not mAEA (30 nm), blocked nicotine-induced activation of dopamine neurons. The
dashed and the solid bars represent the times of fatty acid ethanolamide (OEA, PEA, or mAEA) or nicotine application, respectively. F, The bar graph shows that OEA (3 umand PEA 10 wum) also blocked
nicotine-induced inward currents (I,,qi,e) When dopamine neurons were recorded under the voltage-clamp mode (V4= —70 mV). The inset shows that nicotine (black line) caused a 47 pA
inward current under voltage-clamp mode, which was completely abolished in the presence of OEA (3 pum; OEA’s effect on Iy is superimposed in light gray for comparison). The horizontal bar
represents the time of nicotine application. G, Bar graph summarizing the actions of mAEA (30 nmand 1 um), OEA (3 ), and PEA (10 ) on nicotine-induced enhancement of dopamine neuron
discharge rate (average of the first minute of nicotine perfusion). mAEA at 1 wum was perfused in the presence of capsazepine (CPZ, 10 wm) to prevent the vanilloid-induced excitation of dopamine
neurons. H, Dose-effect relationship of OEA’s blockade of nicotine-induced excitation of dopamine neurons. Numbers above bars indicate the n values for each group of experiments. Data are

expressed as mean == SEM. *p << 0.05, **p < 0.01.

14.7% of baseline, n = 9, t = 2.54, p = 0.02) (Fig. 5D, E). The
effect of WY 14643 was also reversed by MK886 (167.7 = 22.7% of
baseline; WY14643+MK886 vs WY 14643 alone: F(, 5,4 = 5.30,n =
5, p < 0.05, two-way ANOVA) (Fig. 5D, E), confirming the role of
PPAR-« in the modulation of DA neuron responses to nicotine.

Mechanisms downstream of PPAR-a« activation in the
modulation of nicotine effects: involvement of tyrosine
kinases

Although it is well established that PPAR-« regulates gene ex-
pression (Berger and Moller, 2002), the effects of OEA, PEA and
WY14643 observed in the present study were fairly rapid in onset,
thus ruling out gene induction as a possible mechanism, and
suggesting a more likely nongenomic (Gardner et al., 2005)
mechanism occurring in such a short time scale. Among many
diverse pathways, we chose to investigate the regulation of ty-
rosine kinases, because PPAR-a agonists have been shown to
activate several tyrosine kinases, such as the Src family kinase
(SFK) (Gardner et al., 2005), which phosphorylates and nega-
tively regulates &7 nAChRs (Charpantier et al., 2005).

We hypothesized that phosphorylation of nAChRs could ac-
count for PPAR-a mediated inhibition of nicotine effects. To
explore this possibility, we incubated slices with the general ty-
rosine kinase inhibitor genistein (10 um), which has indirect ef-
fects on nAChRs arising from the inhibition of intracellular phos-

phorylation pathways. Experiments were conducted under
voltage-clamp mode on nicotine-induced inward currents, since
genistein had aspecific channel blocker properties which led to a
complete blockade of action potential generation (data not
shown). Genistein was able to prevent OEA blockade of nicotine
effects and restored nicotine-evoked inward currents (37.8 = 4.4 pA,
n==6,t=6.79,p < 0.0001) (Fig. 6 A, B), demonstrating that inhibi-
tion of tyrosine kinases reverses the effect of PPAR-« activation.

To investigate which tyrosine kinase phosphorylates and neg-
atively modulates nAChRs, we focused on SFKs, on the basis of
previous reports highlighting the role of SFK in the regulation of
a7 nAChRs (Charpantier et al., 2005). We predicted that inhibi-
tion of SFK would reverse the effects of OEA. To test this hypoth-
esis, slices were incubated (1 h) and continuously perfused with
the SFK inhibitor PP2 (10 wM). This treatment did not change
electrophysiological features of recorded DA neurons (data not
shown). However, PP2 failed to reverse OEA blockade of nico-
tine’s effects on DA cells under both voltage- and current-clamp
modes. Indeed, in the presence of PP2, OEA abolished nicotine-
induced inward currents (—1.4 £ 5.7, n = 5,¢t = 0.16, p > 0.5)
(Fig. 6 A, B) as well as the nicotine-induced enhancement of firing
rate (100.9 * 7.1% of baseline, F(, o5y = 0.06, n = 6, p = 0.8,
two-way ANOVA) (Fig. 6C,D), suggesting that SFK is not involved
in the negative modulation of nAChRs by PPAR-« agonists.
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Discussion

The present study revealed that naturally occurring noncannabi-
noid FAEs can modulate the responses of VTA DA neurons to
nicotine via PPAR-q, possibly by phosphorylation of nAChRs.
This is the first evidence of an important functional role of this
family of nuclear receptor transcription factors in the brain. It
also highlights the role of FAEs, devoid of cannabinoid actions, in
the regulation of neuronal functions.

Centrally mediated effects of the noncannabinoid FAEs have
been poorly characterized, although OEA and PEA might consti-
tute an independent endocannabinoid-like system. This view is
supported by the findings that their synthesis and inactivation
occurs independently of “classic” endocannabinoids, although in
a similar on demand manner (Hansen et al., 1995; Stella and
Piomelli, 2001; Mackie and Stella, 2006). The molecular targets
underlying their pharmacological effects have remained elusive
until the discovery of their agonistic actions at PPAR-« (Fu et al.,
2003). These nuclear receptors are ubiquitously distributed in the
CNS (Moreno et al., 2004), but their roles in neuronal physiol-
ogy, or in pathophysiological mechanisms of brain disorders, are
largely unknown.

Indirect enhancement of brain FAEs levels obtained by block-
ade of their major hydrolyzing enzyme, FAAH, by URB597
(Kathuria et al., 2003) has been reported to produce antidepres-
sant, anxiolytic and analgesic effects in rodents (Kathuria et al.,
2003; Gobbi et al., 2005; Piomelli et al., 2006; Russo et al., 2007).
All of these effects are prevented by treatment with CB, receptor
antagonists, and have been ascribed to increased AEA levels, thus
suggesting that augmented levels of OEA and PEA do not con-
tribute significantly. However, a PPAR-« antagonist was recently
reported to block the peripheral analgesic effects of URB597,
suggesting that analgesia may be mediated by FAEs binding at
PPAR-« (Jhaveri et al., 2008). In the present experiments, we
discovered that inhibition of FAAH, rather than blockade of CB,
receptors, suppresses nicotine-induced activation of DA neu-
rons. The lack of effect by rimonabant was unexpected in light of
recent reports that CB, antagonists decrease DA release evoked
by nicotine in the nucleus accumbens (Cohen et al., 2002; Cheer
et al., 2007). One can argue, however, that the suppression by
rimonabant of evoked DA release may be independent from the
inhibition of firing activity of DA neurons in the VTA, and may

<«

Figure 5.  OEA and PEA block nicotine activation of dopamine neurons through a PPAR--
mediated mechanism. A, Representative traces of the spontaneous activity of a dopamine neu-
ron during baseline (top), OEA (3 tum) plus the PPAR-cx antagonist MK886 (0.3 wum) preappli-
cation (5 min, second panel), subsequent nicotine application (1 pum, 2 min, third panel), and
wash out (bottom). B, Bar graphiillustrating the effect of MK886 on nicotine-induced activation
of VTA DA neurons and on OEA- and PEA-mediated inhibition of nicotine excitation (average of
the first minute of nicotine perfusion). Note that activation of dopamine neurons by nicotine
was fully restored when either OEA or PEA were coapplied with MK886. Notably, MK886 itself
significantly potentiated nicotine-induced excitation. €, Time course of the effect of MK886 (0.3
), alone orin combination with either OEA or PEA, on nicotine induced excitation. The dashed
bar represents the time of fatty acid ethanolamide (OEA, PEA) plus MK886 or MK886 alone
application. The solid bar represents the time of nicotine application. D, Representative traces of
dopamine neuron firing rate showing that the PPAR-« agonist WY 14643 (300 nm) mimicked
the actions of OEA and PEA by preventing nicotine-induced excitation (top), which was then
restored by the coapplication of MK886 (bottom). E, Time course of the effect of nicotine on
dopamine neuron firing rate in the presence of WY14643 (open symbols) or WY14643 plus
MK886 (closed symbols). The dashed and the solid bars represent the times of PPAR-cx agonist/
antagonist or nicotine application, respectively. In the inset, the bar graph summarizes the
effects of WY14643 (WY) on nicotine-induced excitation of dopamine neuron firing rate (FR)
with or without MK886. Numbers above bars indicate the n values for each group of experi-
ments. Data are expressed as mean == SEM. *p << 0.05.
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be an effect primarily involving their ter- A
minal regions or local circuits within the
nucleus accumbens. Hence, presynapti-
cally located nAChRs potently regulate DA
release in the striatum, including the nu-
cleus accumbens (Zhou et al., 2001). The
effect of URB597 was even more surpris-
ing, since it contradicts the notion that the
endocannabinoid system exerts a facilita-
tory effect on nicotine reward and addic-
tion. Consistent with the present results,
recent findings indicate that URB597 pre-
vents the development of nicotine-
induced CPP, acquisition of nicotine self-
administration and nicotine-induced
reinstatement in both CPP and self-
administration ~models of relapse
(Scherma et al., 2008).

Here, we found that the effects of
URB597 were not entirely dependent on
CB, receptor stimulation, since nicotine- C
induced increases in DA neuron bursting
were not reversed by rimonabant or
AM251, whereas increases in firing rate
were. The PPAR-«a antagonist MK886 re-
versed URB597’s blockade of nicotine-
induced bursting in DA neurons, suggest-
ing that FAEs, other than AEA, play a role
in antagonizing the effects of nicotine.
More importantly, OEA, but not mAEA,
blocked the effects of nicotine on DA neu-
rons in vivo. These results were substanti-
ated by the findings that both OEA and
PEA, but not mAEA, completely pre-
vented nicotine-induced excitation of DA

OEA+

basal

OEA+PP2+
nicotine

wash out

PEA actions via PPAR-« were confirmed
by the antagonism exerted by MK886, and
by the observation that the PPAR-« ago-
nist WY14643 mimicked the actions of
noncannabinoid FAEs. Although AEA has
been reported to display binding affinity
for PPAR-« (Sun et al., 2006, 2007), our
results are not consistent with those find-
ings, since mAEA had no effects on
nicotine-induced excitation of DA neu-
rons, contrary to OEA and PEA. However,
the studies of Sun et al. (2006, 2007) were
performed in HeLa cells transiently trans-
fected with PPAR-a, thus other investiga-
tions are necessary to confirm the binding properties of AEA at
PPAR-« under more physiological conditions and, more impor-
tantly, in neurons. Remarkably, the analgesic properties of mAEA
are fully preserved in PPAR-a knock-out mice, suggesting a
PPAR-a-independent mechanism of action, whereas those of
OEFEA and PEA are abolished (LoVerme et al., 2006).

Studies on recombinant or native nAChRs expressed in Xeno-
pus oocytes or in mouse thalamic synaptosomes, respectively,
have demonstrated that AEA (Oz et al., 2003; Spivak et al., 2007;
Butt et al., 2008) or fatty acids (Butt et al., 2002; Barrantes, 2004)
can modulate nAChR function as noncompetitive antagonists.
Our results tend to exclude this possibility. In fact, they strongly
support the notion that OEA and PEA effects are specifically

neurons in vitro. Additionally, OEA and t
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panel). Pretreatment with the general tyrosine kinase inhibitor genistein (10 M, 5 min) fully blocked OEA actions by restoring
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per se and in the presence of either kinase inhibitor on nicotine-induced inward current. C, Representative traces of dopamine
neuron firing rate showing that PP2 failed to prevent OEA’s action on nicotine-induced excitation (middle). D, Bar graph summa-
rizing the effect of OEA on nicotine-induced enhancement of dopamine neuron discharge rate (average of the first minute of
nicotine perfusion) alone or in the presence of PP2. Numbers above bars indicate the n values for each group of experiments. Data
are expressed as mean == SEM. *p < 0.05.

mediated by PPAR-q, since they are blocked by the selective syn-
thetic antagonist and mimicked by the agonist. Additionally, we
found that mAEA did not alter nicotine-induced DA neuron ex-
citation, making its action as nAChR antagonist unlikely.

As mentioned above, rimonabant revealed a significant com-
ponent mediated by CB; receptors in the effects of URB597. This
piece of evidence is apparently difficult to reconcile with the re-
sults obtained with mAEA. Hence, mAEA does not significantly
modulate nicotine’s effects either in vivo or in vitro, arguing
against an involvement of CB, receptors in the modulation of the
excitatory actions of nicotine on VTA DA neurons. There are
possible explanations for this discrepancy: first, the effects of
URB597 are due to the combination of CB;- (by AEA) and
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Figure 7.  Schematic diagram illustrating the proposed mechanism of PPAR-cx activation,
and modulation of responses of DA neurons to nicotine, by the noncannabinoid fatty acid
ethanolamides OEA and PEA. Their action is mimicked by the synthetic PPAR-«x agonist
WY14643 and blocked by the PPAR-«x antagonist MK886. URB597 enhances brain levels of OEA
and PEA in vivo by inhibiting their major catabolizing enzyme, FAAH. It is proposed that acti-
vated PPAR-« stimulate the activity of tyrosine kinases (Tyr Kin) through a nongenomic mech-
anism. Tyrosine kinases, in turn, induce the phosphorylation (P) of nAChR, which reduces their
responses to the agonists, or promotes rapid internalization. Genistein, a general tyrosine ki-
nase inhibitor, blocks the effects of PPAR-cx activation. |, , activation; L, inhibition.

PPAR-a- (by OEA and PEA) mediated effects. CB, receptors and
PPAR-a may share opposing or reinforcing intracellular path-
ways (including modulation of protein kinases) (for review, see
Alexander and Kendall, 2007). Second, URB597 enhances brain
levels of endogenously released FAEs in a discrete and region-
specific manner, and may influence the release of other endocan-
nabinoids as well, including 2-arachidonoylglycerol (Di Marzo
and Maccarrone, 2008; Maccarrone et al., 2008). Conversely, ex-
ogenously applied mAEA induces the activation of CB, receptors
throughout the brain. The third possible explanation is a differ-
ential involvement of TRPV1 channels, which may be activated
by AEA (following URB597 administration) or by mAEA itself.
However, our results in vitro tend to exclude the possibility that
TRPV1 receptors play a significant role in the modulation of
nicotine effects, since their activation by mAEA, or blockade by
the selective antagonist capsazepine did not change nicotine-
induced excitation of DA neurons.

We investigated also the mechanism by which PPAR-a may
modulate the effects of nicotine. Due to the rapid onset of agonist
actions, we hypothesized that this could be a nongenomic effect.
Hence, PPARs exert pleiotropic effects on many different intra-
cellular pathways, including protein kinases (Gardner et al.,
2005). It was recently shown that the functional properties of a7
nAChRs depend on the tyrosine phosphorylation status of the
receptor, being the result of a balance between SFKs and tyrosine
phosphatases (Charpantier et al., 2005), which negatively or pos-
itively modulate nAChR-mediated currents, respectively. Addi-
tionally, phosphorylation/dephosphorylation of tyrosine resi-
dues in nAChRs controls the number of functional surface
receptors (Cho et al., 2005).

Interestingly, we found that the effects of the tyrosine kinase
inhibitor genistein were consistent with the idea that PPAR-a-
mediated nAChR phosphorylation could account for the block-
ade of neuronal responses to nicotine, although at this stage we
cannot identify the specific tyrosine kinase involved. A proposed
mechanism is displayed in Figure 7. A constitutive interaction
between PPAR-a and tyrosine kinases is also possible, and may
tonically control the ratio of phosphorylated/dephosphorylated
nAChRs, as indicated by the enhanced effects of nicotine in the
presence of the PPAR-a antagonist MK886. It cannot be ex-
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cluded that OEA and PEA may be endogenous modulators of
acetylcholine transmission, since stimulation of muscarinic re-
ceptors was shown to stimulate the biosynthesis of OEA and PEA
(Stella and Piomelli, 2001), suggesting the intriguing possibility
of a reciprocal control between acetylcholine and FAEs.

This novel mechanism of regulation of nAChRs by PPAR-«
may represent a new therapeutic avenue for the discovery of med-
ications to support patients during nicotine abstinence. Our data
demonstrate that the actions of OEA are not restricted to the
periphery and suggest that modulation of neuronal responses to
nicotine by OEA may represent an interesting extension of its
peripheral anorexic properties. PPAR-a agonists, such as fi-
brates, are well established medications clinically used in the
treatment of lipid metabolism disorders. Their central effects are
considered negligible due to their poor ability to cross the blood
brain barrier. However, changes in brain lipid metabolism and/or
composition, or modifications of the levels of endogenous lipid
signaling molecules may exert unsuspected actions on neuro-
transmitter functions, which might be exploited therapeutically.
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